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Abstract. The most recent generation of climate models that has informed the 6th Assessment Report (AR6) of IPCC is

characterized by the presence of several models with anomalously large equilibrium climate sensitivities (ECSs) relative to

the previous generation. Partly as a result, AR6 did not use any direct quantifications of ECSs using 4×CO2 simulations

and relied on other evidence when assessing the Earth’s actual ECS. Here I use the historical observed global-mean surface air

temperature and simulations produced under the Detection and Attribution Model Intercomparison Project to constrain the ECS5

and historical aerosol-related cooling. Based on 15 largely independent models I obtain an average adjusted ECS of 3.4±0.8 K

(at 68% confidence), which is very consistent with the AR6 estimate. Furthermore, importantly I find that the optimal cooling

due to anthropogenic aerosols consistent with the observed temperature record should on average be about 34±31% of what

these models simulate, yielding an aerosol-related global-mean cooling for 2000-2014, relative to 1850-1899, of −0.19±0.14

K (at 68% confidence), when these models simulate on average−0.63±0.28 K. For 12 models the reduction in aerosol-related10

cooling equals or exceeds 50%. There is a correlation between the models’ ECS and their aerosol-related cooling, whereby

large-ECS models tend to be associated also with large aerosol-related cooling. The results imply that a large reduction of

the aerosol-related cooling, along with a more moderate adjustment of the greenhouse-gas related warming, for most models

would bring the historical global mean temperature simulated by these models into better agreement with observations.

1 Introduction15

The equilibrium climate sensitivity (ECS) is a well-established (Arrhenius, 1896) yet, despite progress, poorly constrained

property of the climate system (Knutti et al., 2017; Forster et al., 2021; Smith and Forster, 2021). For a hypothetical doubling

of the atmospheric CO2 content above preindustrial levels, it states the associated surface temperature increase at equilibrium.

Disagreement amongst climate models, particularly in the most recent generation of climate models (Meehl et al., 2020), is

an impediment to narrowing its associated long-standing uncertainty. The large spread in ECSs characterizing the present20

generation of climate models is contributing to some substantial inter-model spread in simulated end-of-century warming in

future-scenario simulations (Lee et al., 2021). It is therefore desirable to reduce this model disagreement to more confidently

project future climate under any climate scenario.

In this work I explore what “historical", all-forcings experiments and single-forcing experiments conducted for the Detec-

tion and Attribution Model Intercomparison Project (DAMIP, Gillett et al., 2016) imply for both the climate sensitivity and25
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the aerosol-driven cooling which partially offsets global warming. GHG-driven warming and aerosol-induced cooling by far

dominate the human influence on global-mean surface temperature (Forster et al., 2021). Decreases in future aerosol loading

are thought to contribute to projected warming (Andreae et al., 2005), but the size of this feedback is highly uncertain (Forster

et al., 2021; Watson-Parris and Smith, 2022). In individual models mismatches between observed and simulated “historical"

global-mean surface temperatures have been associated with a misrepresentation of the aerosol-induced cooling (Andrews30

et al., 2020; Golaz et al., 2022), such that despite the increase in the mean ECS characterizing the 6th Coupled Model Inter-

comparison Project (CMIP6) ensemble of models, relative to CMIP5, the simulated historical warming in CMIP6 is actually

smaller than in CMIP5 (Flynn and Mauritsen, 2020; Smith and Forster, 2021). Smith and Forster (2021) relate an increase in

aerosol-driven cooling in CMIP6 versus CMIP5 to coupling to the also increased GHG-driven warming.

Below we develop a heuristic regression approach to evaluate, for all models participating in DAMIP, the fidelity of the35

simulation of both GHG-driven surface warming and aerosol-related cooling in the CMIP6 ensemble.

2 Data and Method

2.1 DAMIP models and experiments

Simulations produced for DAMIP, “historical" simulations (Eyring et al., 2016) extended to 2020 using the mid-range Shared

Socioeconomic Pathway (SSP) 245 simulations (Gidden et al., 2019), and published ECS values that are based on 4×CO240

simulations (Eyring et al., 2016) form the basis of this analysis.I use all 15 models for which “hist-GHG”, “hist-aer”, and

“hist-nat” simulations are available (table 1). The hist-GHG, hist-aer, and hist-nat experiments are identical to the “historical”,

coupled all-forcings simulations except that forcings other than the GHGs, aerosols or their precursors, and natural (solar,

volcanic) influences, respectively, are held at their 1850 values (Gillett et al., 2016).

The models that have completed these simulations span a large range of ECSs (between 2.4 and 5.6 K). For 12 models45

the simulation period for DAMIP simulations is 1850-2020, but three models (CESM2, E3SM-2-0, GISS-E2-1-G) end their

DAMIP simulations in 2014. For these models I only use their “historical" temperature at the surface (tas) fields without

extension.

Furthermore as an observational reference I use the HadCRUT5 global-mean surface temperature climatology (Morice et al.,

2021). I form ensemble-, global-, and annual-mean temperature timeseries from the available simulations.50

Figure 1 summarizes the behaviour of surface temperature in the 15 models over the historical period. Panel (a) indicates that

as there is an approximate proportionality between the simulated warming attributable to GHGs (as taken from the hist-GHG

ensembles) and the models’ tabulated ECS values. Furthermore, panel (b) indicates that with some notable exceptions, the

models are mostly additive in the sense that the sum of the warmings simulated in the three DAMIP ensembles is mostly quite

similar to the warming simulated in the models’ historical ensembles.55
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Table 1. DAMIP models, ensemble sizes of the experiments, literature ECS values of the models, and references for the ECS values and the

model data.

Model

Sizes of ensembles

(historical/hist-

ghg/hist-aer/hist-

nat/ssp245)

ECS

(K)
Reference for ECS References for data

ACCESS-CM2 10/3/3/3/5 4.7 Meehl et al. (2020) Dix et al. (2019a, b, 2020a, b, c)

ACCESS-ESM1-5 40/3/3/3/40 3.9 Meehl et al. (2020) Ziehn et al. (2019a, b, 2020a, b, c)

BCC-CSM2-MR 3/3/3/3/1 3.0 Meehl et al. (2020) Wu et al. (2018, 2019a, b, c); Xin et al. (2019)

CanESM5 25/25/15/25/25 5.6 Meehl et al. (2020) Swart et al. (2019a, b, c, d, e)

CESM2 11/3/2/3/0 5.2 Meehl et al. (2020) Danabasoglu (2019a, b, c, 2020)

CNRM-CM6-1 30/10/10/10/10 4.8 Meehl et al. (2020) Voldoire (2018, 2019a, b, c, d)

E3SM-2-0 5/5/5/5/0 4.0 Qin et al. (2023) E3SM (2022a, b, c, d)

FGOALS-g3 6/3/3/3/4 2.8 Li et al. (2020) Li (2019, 2020a, b, c, d)

GFDL-ESM4 3/1/1/3/3 3.9 Meehl et al. (2020)
Krasting et al. (2018); Horowitz et al.

(2018a, b, c); John et al. (2018)
GISS-E2-1-G 10/5/5/5/0 2.4 Meehl et al. (2020) NASA/GISS (2018a, b, c, d)

HadGEM3-GC31-LL 5/5/60/10/5 5.6 Meehl et al. (2020)
Ridley et al. (2019); Jones (2019a, b, c); Good

(2019)
IPSL-CM6A-LR 33/10/10/10/11 4.6 Meehl et al. (2020) Boucher et al. (2018a, b, c, d, 2019)

MIROC6 50/50/10/50/50 2.6 Meehl et al. (2020)
Tatebe and Watanabe (2018); Shiogama

(2019a, b, c); Shiogama et al. (2019)
MRI-ESM2-0 10/3/3/3/5 3.2 Meehl et al. (2020) Yukimoto et al. (2019a, b, c, d, e)

NorESM2-LM 3/3/3/3/3 2.5 Meehl et al. (2020) Seland et al. (2019a, b, c, d, e)

2.2 Regression models

Using a linear regression approach, I derive rescaling factors α1, β1, γ1, α2, β2, and γ2 for the temperature responses to

GHG, aerosol, and natural forcings such that the resultant sums of the rescaled simulated temperature anomalies minimize the

root-mean-squared deviations ϵ1 and ϵ2 versus the ensemble-, global-, and annual-mean “historical" surface-air temperature

anomaly Thist and the HadCRUT5 temperature anomaly record Tobs, respectively, over the period 1920-2020 or 2014 (101 or60

95 years), respectively:

Tobs = α1ThGHG + β1Thaer + γ1Thnat + ϵ1 and (1)

Thist = α2ThGHG + β2Thaer + γ2Thnat + ϵ2. (2)

ThGHG, Thaer and Thnat are all normalized relative to their 1850-1899 average. For a model which is perfectly additive in the

anthropogenic GHG, anthropogenic aerosol, and natural forcings, and in the absence of climatological noise, the regression65

coefficients α2, β2, and γ2 would be 1. For the purposes of comparison of these two regression models, I form the ratios of the
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Figure 1. (a) Simulated global- and annual-mean warming for 2000-2014 in the hist-GHG ensembles of the DAMIP models, relative to the

1850-1899 mean, versus their ECSs (all in K). The width of the horizontal lines corresponds to std(Ti)/
√

15, where the Ti are the annual-

mean temperatures for 2000-2014. Solid line: best-estimate proportional fit. The models’ names are abbreviated to three characters. AC1

= ACCESS-ESM1-5. AC2 = ACCESS-CM2. (b) Simulated global-mean warming between 1850-1899 and 2000-2014 in the “historical"

ensembles versus the sum of these warmings simulated in the respective hist-GHG, hist-aer, and hist-nat ensembles. The solid line marks

the diagonal, dashed lines the 80 and 120% lines; the lengths of the bars in both directions correspond to the statistical uncertainties at 68%

confidence.

regression coefficients

A =
α1

α2
,B =

β1

β2
(3)

and their uncertainties

δA = A

√(
δα1

α1

)2

+
(

δα2

α2

)2

and (4)70

δB = B

√(
δβ1

β1

)2

+
(

δβ2

β2

)2

, (5)

where δα1 etc. are the single-variable uncertainties that emerge from the regression analysis.

I note that there is a considerable joint uncertainty resulting from substantial anticorrelations between ThGHG and Thaer,

but much smaller correlations (and practically no joint uncertainty) between ThGHG and Tnat, and between Thaer and Tnat.

This allows me to simplify the analysis and focus in the following only on the GHG and aerosol influences. To study their joint75

uncertainty, I calculate, as a function of α and β and time, the regression error timeseries

robs(α,β) = Tobs−αTGHG−βThaer − γ1Thnat (6)
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I thus define an error function

Eobs(α,β)≡

√√√√r2
obs(α,β)

ϵ21
, (7)

where the overbar denotes the 101 and 95-year means over 1920-2020 and 1920-2014, respectively.80

I define that a regression fit differs from the optimal fit of equation 1 if Eobs > Emax, where Emax is a value of the error

function, to be determined below, where the fits associated with such an RMS residual differ significantly from the optimal fit.

Substituting Qobs(α,β) = r2
obs(α,β), with ∆α = α−α1 and ∆β = β−β1, I express Qobs as a quadratic form expanded

around the minimum:

Qobs(α,β) = ϵ21 +
1
2
(∆α,∆β)M


∆α

∆β


 (8)85

where terms linear in (∆α,∆β) are 0 because the expansion is around the minimum of Qobs, and

M =




∂2

∂α2
∂2

∂α∂β

∂2

∂α∂β
∂2

∂β2


Qobs = 2


 T 2

hGHG ThGHGThaer

ThGHGThaer T 2
haer


 (9)

The Hesse or curvature matrix M is characterized by its two positive eigenvalues λ1 and λ2 and associated eigenvectors e1

and e2, with λ1 < λ2. The extreme case of Thaer ∼ ThGHG, i.e. M is degenerate, would imply λ1 = 0. This is not actually the

case for any of the models considered here, but the two regressors are similar enough that λ1 is close to 0. The analysis implies90

that the error function Eobs forms ellipses around the minimum with two orthogonal axes that point in the directions of the

eigenvectors with curvatures in these directions proportional to
√

λ1 and
√

λ2.

I interpret the eigenvectors e1 and e2 as the directions in (α,β) parameter space that correspond to optimal cancellation (for

e1) and optimal reinforcement (for e2) of the warming effects due to GHGs and aerosols. For the case of optimal cancellation,

GHG warming and aerosol-induced cooling are at all statistically distinguishable in the observed temperature record because95

of a trend reversal in SO2 precursor emissions in the late 20th century (Szopa et al., 2021) causing anthropogenic aerosol-

induced cooling to be on a declining trend (in absolute terms) since then, in contrast to the monotonically increasing warming

since 1850 associated with GHGs. This means that variations in the contributions of both processes in this direction of optimal

cancellation cause detectable variations in the temperature trend of the final 20 years of the regression fit (2001-2020 or

1995-2014, respectively) that I will relate to the trend uncertainty of the observed temperature record. This analysis will100

define bounds Emax on the cost function Eobs and consequently the regression parameters (α1,β1). The analysis implies that

regression parameters outside these bounds yield significantly and detectably inferior regression fits.

Variations in the direction of optimal reinforcement (e2) by contrast produce shifts of the regression fits away from the

optimum in either direction. By comparing these shifts to the uncertainty in the mean of the detrended 2001-2020 (or 1995-

2014, respectively) global temperature record (∼0.03 K in HadCRUT5) I find bounds on the cost function that are substantially105

more restrictive than the bounds associated with variations in the direction of optimal cancellation discussed above. I will
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therefore only present an analysis to variations in the direction of cancellation e1 which yields more conservative, wider error

bounds.

Analogously, I define an error function Ehist(α,β) for the regressions to the “historical" ensemble means:

Ehist(α,β)≡

√√√√r2
hist(α,β)

ϵ22
. (10)110

where

rhist(α,β) = Thist−αTGHG−βThaer − γ2Thnat. (11)

The ellipses spanned by Ehist have the same orientations and aspect ratios of the two main axes as those spanned by Eobs.

3 Evaluation

3.1 Example model calculations115

As an example, figure 2 shows the result of the analysis for four models. GHGs drive a warming of around 2.1 K in the

HadGEM3-GC31-LL model over 1850-2020 (light green line), offset by aerosol-driven cooling of around −0.9 K by 2020

(dark green). Natural influences explain the temporary features associated with volcanic eruptions and solar forcing (blue line).

Optimal regression parameters α2, β2, and γ2 for the “historical" simulation are close to 1 (i.e. HadGEM3-GC31-LL is nearly

“additive", violet line). However, the regression against Tobs requires substantial reductions in the parameters describing both120

the GHG and the aerosol influences, to the point that the aerosol cooling would need to be reduced by around 85%, and the

GHG influence by 40%, to match the observed record (orange line).

The other three models will be discussed in more detail below.

Figure A1 contains equivalent plots for the remaining 11 models.

3.1.1 When are two regression fits statistically indistinguishable?125

I note that the observational record exhibits a nearly linear warming trend towards the end of the record (figure 2). Furthermore

during much of the 20th century the aerosol-induced cooling is directly opposed to the GHG warming, but in the 1990s its trend

changes sign in the HadGEM3-GC31-LL hist-aer ensemble. This trend reversal is a major reason that the GHG and aerosol

influences are at all statistically distinguishable in the historical record. I thus define two regression fits to be significantly

different if their 20-year trends for 2001-2020 (or 1995-2014, for CESM2, E3SM-2-0, and GISS-E2-1-G) differ by more than130

the observational uncertainties at 95% confidence in these trend (κ = 6.7 and 6.3 mK a−1, respectively).

I evaluate the regression fits in regression parameter space (α,β) along the lines that correspond to optimal cancellation of

the warming and cooling impacts of GHGs and aerosols, respectively. This is the line spanned by the eigenvector corresponding

to the smaller eigenvalue λ1, e1, i.e.

(α,β) = (α1,β1) + c · e1 (12)135
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Figure 2. Ensemble-, global-, and annual-mean temperature anomalies relative to the 1850-1899 average for HadGEM3-GC31-LL, BCC-

CSM2-MR, FGOALS-g3, and NorESM2-LM. Black symbols and dark green, light green, and blue lines: The DAMIP and “historical"

ensemble means as indicated. Violet: Optimal regression fits to Thist following equation 2. Orange: Optimal regression fits to Tobs, the

HadCRUT5 reconstruction, following equation 1. Red symbols: HadCRUT5 (Morice et al., 2021). The regression coefficients α1, β1, γ1,

α2, β2, and γ2 that are stated in orange and violet are as defined in equations 1 and 2.

This line marks the direction of maximum joint uncertainty in the regression parameters.

I plot the error functions Eobs against the 2001-2020 (or 1995-2014) trends in the associated fits T (α,β) = αThGHG +

βThaer + γ1Tnat, evaluated along the line described by eq. 12 (figure 3). By evaluating Eobs at the two trend values that

differ from the trend in the optimal solution by κ, I find model-dependent values for Emax. For all but three of the models

Emax ≤ 1.14. However, BCC-CSM2-LR, FGOALS-g3, and NorESM2-LM have anomalously large such thresholds. These140
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Figure 3. Error function Eobs as a function of the 2001-2020 (for CESM2, E3SM-2-0, and GISS-E2-1-G: 1995-2014) temperature trends

in the regression fits to Tobs (eq. 1), for the DAMIP models. The trends are evaluated along the line in (α,β) parameter space described

by equation 12. Vertical solid line: Trend in the optimal fit (that minimizes Eobs). Vertical dashed lines: Trends in the sub-optimal fits that

differ from the optimal trend by the observational trend uncertainty κ. Horizontal line: Value of the error function corresponding to this trend

uncertainty. The number in the titles is the value of the error function at these points.
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models’ simulations of tas are displayed in figure 2. NorESM2-LM simulates a large warming spike around 2002 in its hist-aer

ensemble-mean temperature timeseries, giving an anomalous cooling trend for 2001-2020. FGOALS-g3 produces almost no

cooling in its hist-aer ensemble. BCC-CSM2-LR exhibts continuing cooling in its hist-aer ensemble in this period, with an

anomalous, warm spell in the 2010s. In these three cases, the threshold of detectability, reliant on a significant change in the

overall cooling trend in the hist-aer ensemble at the end of this experiment, does not work well. The other 12 models yielding145

smaller, regular values for Emax all simulate a substantial change in the rate of cooling such that their hist-aer temperature

timeseries become statistically independent from their hist-GHG temperatures, and almost all exhibit warming trends during

the final two decades of their hist-aer ensembles (figures 2 and A1).

3.2 Joint uncertainty analysis of the GHG and aerosol influences for all models

Figure 4 illustrates firstly that additivity does not extend to all models, i.e. (α,β) = (1,1) is well outside the contoured uncer-150

tainty ellipses of the Thist regressions for most models.

In all cases except for two of the anomalous models (BCC-CSM2-MR, FGOALS-g3) there are no overlaps between the

regression uncertainty ellipses for the fits to Tobs and Thist. This means 13 of the models have systematic differences between

the simulated historical and the observed temperature evolutions large enough to show in this lack of overlap of the regression

parameters. This implies irreconcilable scaling factors α and β for the GHG or aerosol influences, or both.155

Specifically regarding the GHG rescaling factor α (plotted on the vertical axes in figure 4), for some large-ECS models

including ACCESS-CM2, CanESM5, CESM2, HadGEM3-GC31-LL, and IPSL-CM6-LR, the analysis suggests that α2 < α1

or A < 1, i.e. to better match the HadCRUT5 timeseries, the GHG influences in these models need to be scaled down.

Lastly, for almost all models the analysis suggests that the aerosol rescaling factor β1 derived from Tobs is smaller than β2

derived from Thist (i.e., in figure 4 the coloured ellipses are to the left of the contoured ellipses). Exceptions are the FGOALS-160

g3 model (discussed above) and the IPSL-CM6A-LR and MIROC6 models where both regressions yield about the same aerosol

influence. Exaggeration of the aerosol influence is particularly large and unambiguous for ACCESS-CM2, ACCESS-ESM1-5,

CanESM5, E3SM-2-0, HadGEM3-GC31, and NorESM2-LM; these models all simulate at least −0.7K of cooling in their

hist-aer ensembles.

3.3 Emergent constraints for the ECS and the aerosol cooling influence165

3.3.1 The GHG influence

Figure 5 shows the result of the regression analysis (section 2.2) for all models. The ensemble includes three models (CanESM5,

CESM2, HadGEM3-GC31-LL) that have ECSs outside the very likely range given by AR6 (2 to 5 K, Forster et al., 2021, figure

5a). For these three models, the GHG correction factor A < 1 (i.e. a reduction of the GHG influence would bring their historical

simulations into better agreement with the observations). Particularly for CanESM5, with an ECS of 5.6K, this reduction is170

quite large, amounting to a 50% reduction of the GHG induced warming. At the other end of the spectrum, MIROC6, with

an ECS of 2.6 K, requires an increase in the GHG-induced warming by 33% to bring its historical evolution into agreement
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Figure 4. Error functions Eobs (colours, eq. 7) and Ehist (contours, eq. 10) where these functions are smaller than max(Emax,1.1), for

the 15 DAMIP models. ‘+’ symbol: α = β = 1. “Aer. cooling" is the global-, ensemble-, and annual-mean cooling for 2000-2014 relative to

1850-1899 as simulated in the models’ hist-aer ensembles. “ECS" is as in table 1.
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Figure 5. (a) The models’ ECSs (K) versus A (equation 3). The lengths of the horizontal lines depict the regression uncertainties at 68%

confidence. Solid line: Regression fit assuming ECS·A = const. Dashed and dotted lines: Uncertainty ranges at 68 and 95% confidence. The

yellow and green regions are the likely (i.e. 66% confidence) and very likely (90%) ECS intervals (Forster et al., 2021). (b) Same as (a) but

for ECS·A versus A. The solid, dashed and dotted lines are the mean and the 68 and 95% confidence intervals. (c) The tabulated ECSs versus

cooling simulated in the hist-aer ensembles for 2000-2014 relative to 1850-1899. Solid fit: Best linear fit. (d) The aerosol-induced cooling

taken from hist-aer times B (K) versus the correction factors to aerosol cooling B (equation 3). Solid and dashed lines denote the means and

68% confidence limits of both quantities.

with HadCRUT5. In general, the distribution (panel a) can be approximated by ECS ∼A−1. Equivalently, panel (b) shows the

ECS ·A versus A. The thus “adjusted" ECSs (i.e., ECS ·A) are now within the AR6 “very likely" range for all models, and

the multi-model spread is similar to the AR6 uncertainty range. We obtain a multi-model-mean adjusted ECS of 3.4±0.8 K at175

68% confidence (figure 5b).
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3.3.2 The aerosol influence

The second part of this analysis concerns the aerosol-induced cooling. There is an anticorrelation (with a correlation coefficient

of −0.43) between the cooling attributable to anthropogenic aerosol increases, as discerned from hist-aer, and the ECSs of

the 15 models (figure 5c). This means that large-ECS models tend to compensate some of their GHG-induced warming by180

simulating a relatively large cooling due to aerosols. In other words, the biases in both properties are coupled.

As noted above, 12 of the 15 models require substantial decreases of the aerosol-induced cooling (i.e. B ≤ 0.5) to bring

their simulations into optimal agreement with HadCRUT5. Only one model (FGOALS-g3) requires a substantial (B = 8)

increase in this cooling. This model simulates an anomalously small aerosol-related cooling of only around −0.1 K in its hist-

aer ensemble (figure 5c), and I derive a highly anomalous regression coefficient of β2 = 0.07 to bring the hist-aer simulated185

cooling into agreement with the historical ensemble by this model. For this reason the model is not considered in the aerosol

part of the analysis conducted here. For MIROC6 and IPSL-CM6A-LR, the correction B ≈ 1, i.e. these models simulate the

optimal magnitude of aerosol-induced cooling. Seven of the remaining 12 models have 0 < B < 0.25, i.e. the aerosol-induced

cooling would need to reduce by more than 3/4. This group includes some models with large aerosol-induced cooling such as

HadGEM3-GC31-LL, NorESM2, and E3SM-2-0. The corrected aerosol-induced cooling averages to −0.19± 0.14K between190

1850-1899 and 2000-2014 and the average scaling factor B is 0.34±0.31, i.e. as a group the analysis implies that a 2/3

reduction in aerosol-related cooling would bring the models into agreement with the HadCRUT5 climatology. The 14-model

average actual simulated cooling is −0.63± 0.28K.

4 Conclusions and discussion

Mismatches between the observed global-mean surface temperature and CMIP6 “historical" simulated temperature have been195

documented before and attributed, in some cases, to a deficient simulation of aerosol-related cooling (Andrews et al., 2020;

Flynn and Mauritsen, 2020; Smith and Forster, 2021; Golaz et al., 2022). Here I exploit these mismatches to derive scaling

factors for the GHG-induced warming and the aerosol-related cooling on temperature that in a hypothetical model would

bring the simulated historical temperature into optimal agreement with the HadCRUT5 climatology. I then relate these scaling

factors to the warming attributable to GHGs, on the one hand, and on the other hand to the cooling attributable to anthropogenic200

aerosols. The GHG scaling factors very approximately follow an inverse relationship with the ECSs of the models, such that

the products of the ECSs and the scaling factors are in better agreement with the AR6 evaluation of the planetary ECS than the

modelled ECSs themselves. Particularly, for three large-ECS models with ECSs outside the AR6 “very likely" range (Forster

et al., 2021), this adjustment brings these ECSs into agreement with the AR6 estimate. However, the multi-model disagreement

in the scaled ECSs still remains considerable.205

These results are consistent with Smith and Forster (2021) but arrived at using an independent approach. Smith and Forster

(2021) use energy budget constraints to find that despite reductions in historical aerosol and GHG forcing from CMIP5 to

CMIP6, stronger climate feedbacks in CMIP6 models, which are reflected in the increased ECSs in CMIP6 models, cause both

stronger aerosol cooling and from 1990 increased GHG warming. This analysis generally confirms their results and but shows
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that the overestimation of aerosol-induced cooling pertains not just to the high-ECS models but to many of the moderate-ECS210

models as well. Only three models do not exhibit this behaviour, characterized by both high (IPSL-CM6A-LR) and moderate

(MIROC6, FGOALS-g3) ECSs.

I find an anticorrelation between the total simulated aerosol-induced cooling since 1850 and the ECSs of the models, sug-

gesting that both quantities are coupled and that there could be a compensation of errors between these two processes. 12

out of 15 models exhibit aerosol cooling scaling factors smaller than 0.5 to optimally reconcile their aerosol-related cooling215

with the historical record. The result suggests that the large majority of DAMIP models considerably overestimates aerosol-

induced cooling. Using 14 models with aerosol scaling factors between 0 and 1.1, we derive an average correction factor for

the aerosol-induced cooling of 0.34±0.31 and a mean cooling by 2000-2014, relative to 1850-1899, of−0.19±0.14K (both at

68% confidence). This means some stronger simulated aerosol-induced cooling, exceeding−0.5K in the cases of eight models,

is very likely unrealistic.220

There are two limitations to the analysis presented here: The first is that the hist-GHG experiment quantifies the responses

of the climate models to all GHGs in combination, whereas the ECSs are an expression of the sensitivity of climate only to

CO2 increases. I have shown that there is a near-perfect proportionality and a high degree of correlation (0.78) between the

warmings simulated in hist-GHG and the ECSs in the 15 models used here (figure 1), suggesting that the substantial model

diversities that exist for both quantities are due to the same processes, i.e. climate feedbacks e.g. due to cloud adjustments that225

are not sensitive to the detailed properties of the driving GHGs.

The other, more fundamental limitation is that the models do not respond perfectly additively to GHG and aerosol forcing.

This is expressed in deviations from 1 for the α2, β2, and γ2 parameters in equation 2 (figure 4). The non-additivity could be

due to a variety of reasons, including forcings not included in the analysis (such as land use changes and ozone changes). Whilst

these are usually considered relatively small forcers on the global scale (Forster et al., 2021), I have tested the sensitivity of the230

results to including, in equations 1 and 2, terms for the temperature anomalies simulated under the hist-totalO3 experiment in

which all forcings except ozone are held constant. Three models (CanESM5, GISS-E2-1-G, and MIROC6) have completed this

experiment. Ozone changes are the most important anthropogenic radiative forcing agent after those considered here (GHGs

and aerosols, Forster et al., 2021). However, expanding the regression model in this way produces only minimal differences

for the regression coefficients in the cases of those three models (not shown), suggesting that my regression model is set up235

correctly, covering the attributable global drivers of climate change for tas.

For the aerosol influence, for several models we deduce aerosol regression coefficients β2 < 0.5 (equation 2), namely BCC-

CSM2-MR, CNRM-CM6-1, GFDL-ESM4, GISS-E2-1-G, IPSL-CM6A-LR, and FGOALS-g3. Such large deviations from

unity call into question the suitability of these models’ hist-aer simulations for attribution. However, several other models

indicating that large reductions in aerosol cooling would be beneficial for bringing the simulated historical temperature record240

into better agreement with observations, including ACCESS-ESM1-5, CanESM5, E3SM-2-0, HadGEM3-GC31-LL, and, MRI-

ESM2-0, all have β2 > 0.7, i.e. these models behave relatively additively, and the inference that exaggerated historical aerosol-

induced cooling contributes substantially to errors in the simulations of global-mean tas by these models is quite well founded.
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In summary, I have used a reconstruction of global-mean surface temperature and DAMIP and historical simulations by

15 contemporary climate models to derive constraints for the GHG-induced warming and the aerosol-induced cooling, by far245

the leading influences driving global warming. Using an emergent constraint approach, I derive a “corrected" ensemble-mean

equilibrium climate sensitivity of about 3.4±0.8 K (at 68% confidence), in excellent agreement with the AR6 estimate (Forster

et al., 2021). More importantly, I find that for 12 of these models, substantial reductions in the aerosol-induced cooling, along

with some reductions in the GHG-induced warming for models with large ECSs, would bring their historical simulations

into better agreement with the observational record. The results presented here highlight ongoing difficulties with correctly250

representing climate feedbacks in global models. Substantial, systematic, and nearly community-wide issues with representing

historical global surface temperature reduce confidence in quantitative projections of global warming by models affected by

these problems. Interestingly, at least some CMIP3 models were consistent with observations without any need for rescaling

the aerosol and GHG signatures (Stone et al., 2007b), including for the precursor of CESM2 (Stone et al., 2007a). This suggests

that at least for this model development occurring in the intervening time has introduced this problem.255

The analysis is limited by the substantial anticorrelation between the GHG and the aerosol global-mean warming signatures.

I anticipate that as anthropogenic aerosol production continues, as projected, to decline in the future (Lee et al., 2021), the anti-

correlation between GHG-induced warming and aerosol-induced cooling will reduce, allowing for a more confident attribution

of their respective roles in driving global warming.

Data availability. All model data used here have been downloaded from the Earth System Grid Federation, e.g. https://esgf-node.llnl.260

gov/search/cmip6/. HadCRUT5.0.1.0 data were obtained from http://www.metoffice.gov.uk/hadobs/hadcrut5 on 1 July 2023 and are ©

British Crown Copyright, Met Office [2019], provided under an Open Government License, http://www.nationalarchives.gov.uk/doc/open-

government-licence/version/3/.

Appendix A: Regression fits for the remaining models

For models not represented in figure 2, the regression fits are given below.265
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Figure A1. Same as figure 2 but for the ACCESS-CM2, ACCESS-ESM1-5, CanESM5, CESM2, CNRM-CM6-1, E3SM-2-0, GFDL-ESM4,

GISS-E2-1-G, IPSL-CM6A-LR, MIROC6, and MRI-ESM2-0 models.
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